Prostate Cancer Prediction and Biomarker Identification Using Machine Learning and
Deep Learning Algorithms on Transcriptome Data from The Cancer Genome Atlas
(TCGA) Database
ABSTRACT

The search for novel RNA biomarkers and innovative methods to identify cancerous tissues can significantly advance the development of RNA-based diagnostic and therapeutic strategies, leading to more effective and
personalized approaches for cancer treatment and management. In this project, we investigated the feasibility of predicting or diagnosing prostate cancer, which ranks among the most prevalent cancers in the male
population, by applying machine learning (ML) and convolutional neural network (CNN) algorithms to gene expression data of normal and primary tumor prostate gland samples. Genes/features used as input for ML were
reduced by preselecting the most differentially expressed (DE) genes between cancer and normal samples. Machine learning algorithms (logistic regression, random forest, random forest on the most important principal
components (PCs)) were applied to predict cancer outcomes using RNA expression data on the selected genes. A CNN was also tested on the same tabular data converted to images. Moreover, through an examination of
the disturbed gene expression patterns in prostate cancer samples and the genes important for predicting cancer versus normal tissue outcomes by machine learning, we also set up to discover putative novel RNA

biomarkers for prostate cancer.
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Convolutional Neuronal network (CNN) with Tabular data converted to Images
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T (A) Tabular RNA-seq data (derived from the preselected 1380 features) was transformed into images using the IGTD algorithm (Zhu et
C al. 2021). Random examples of the generated images for Normal Tissue (category 0) and Primary brostate Jumor samples (category 1) (A-C) The feature importance analysis was conducted using the Random Forest Classifier optimized by a single random split. The data was split into 80% for
- 459b-8215- training and 20% for validation, and the model was trained with the best hyperparameters selected. The top 35 important features with the highest absolute
_unstranded e3e510a-81cf-459b-8215-044808116654. are displayed. (B) A CNN was applied to the generated images from (A). The CNN architecture comprised four convolutional neural
| | Retworke with ReLU activation, folowed by one rmax.pooling yer and further fattening. The flttened cata were fed into a hnear tayer importance values calculated using permutation importance (A} or with the highest absolute SHAP (SHapley Additive exPlanations) values (B) in both the

training and validation sets are displayed. (C) The top 35 features with the highest absolute importance values calculated using Gini importance values are
shown for the training set. (D) Features/genes with absolute importanc values greater than O were selected for further analysis. Venn diagrams illustrate
the intersection between the genes found important for model prediction through the different tests conducted in (A-C). (E) Venn diagrams depict the
intersection of the 100 top DE expressed genes selected based on either higher log2FoldChange (Top_DE_genes) or lowest padj value
(Top_DE_genes_by_padj) with the 22 genes found importance by the 3 algorithms (Int_all_split). (F) The number of publications (up to 10) found for each
gene in PubMed containing the gene name and cancer-related terms in the abstract or title of the publication. Among the lists (Int_all_Split and,
Top_features_validation_SHAP_split) there are several genes already known to be involved in prostate cancer. Additionally, the script is capable of
retrieving the title, abstract, and citation for these publications.

{ with ReLU activation and then into a final linear layer with sigmoid activation and one output neuron. The sigmoid activation provided

| probabilities for each class directly. The losses in the training and validation sets and the accuracy of the validation set over the number

| of epochs for the best hyperparameters (Ir: 0.0002, best_epoch: 19) are displayed after testing different learning rates for a single run.
J e | (B) The classification report and the confusion matrix for this run under these best hyperparameters are presented. (C) The CNN was

| retrained with the entire dataset (validation and train sets), using the best hyperparameters. This model was then tested on the 10% of
data kept unseen. The confusion matrix and classification report for this test set for this specific run are shown. The model could
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predicted sample for this specific run is shown.

CONCLUSIONS AND OUTLOOK

* Machine learning applied to RNAseq data has successfully predicted prostate cancer outcomes. * Stratified splitting improved Random Forest performance on underrepresented samples.

« Random forest outperformed logistic regression, enhancing recall for under-represented normal tissue. Further enhancement of CNN could be achieved with stratification and cross-validation.

*  PCA feature reduction was effective; 2 PCs matched RF performance with 1,380 features. *  Generating synthetic RNA-seq data and utilizing independent datasets is recommended.

e Optimizing Random Forest by adjusting hyperparameters (min_samples_split,
min_samples_leaf, max_features) is advised to boost stability, reduce overfitting, and enhance
performance..

¢ Transforming tabular data into images for a CNN improved model performance, particularly recall for the
underrepresented category; visualization provided insights not easily discernible from 1,380 tabular features.

¢ Main issues: unbalanced, limited data and no accessible independent dataset for final validation. While models
showed high accuracy, they struggled with underrepresented normal samples but excelled in classifying tumor
samples.



